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COMMENT 

Chaotic behaviour of a Hamiltonian with a quartic potential 

W-H Steebt, C M Villett and A KunickS 
t Rand Afrikaans University, Department of Physics, PO Box 524, Johannesburg 2000, 
Republic of South Africa 
.t Kraftwerkunion, Rechenzentrum, 8520 Erlangen, West Germany 

Received 16 April 1985 

Abstract. The Hamiltonian H ( x ,  p) = i p : + i p : + i x : x :  is investigated. The different aspects 
(singular point analysis, stability analysis, numerical treatment etc) for studying chaotic 
behaviour are discussed. Moreover, we discuss the quantised version of the Hamiltonian. 

The Hamiltonian 

H ( x ,  p )  = i p : + ; p : + $ x : x :  

with the equations of motion 

x 1  = P l y  x 2  = P2 

p1 = -x ,x : ,  

x 1 -  - - x  1 2 ,  x 2  

2 
p 2  = -x]x2  

x* = -x1x2 

or 
2 

can be viewed as the simplest Hamiltonian showing chaotic behaviour. 
In this comment we discuss this Hamiltonian from different points of view. Thus 

far different aspects have been studied in the literature (Martinyan et al 1981, Carnegie 
and Percival 1984, Steeb and Kunick 1985). This comment will complete these studies. 

When we study a Hamiltonian the following approaches can be applied. 
(i)  The Painlev6 test (Yoshida 1983) can be applied to test the algebraicintegrability. 

The system under investigation is considered in the complex domain. To perform a 
PainlevC test for the autonomous system of first order xi = F , ( x )  the Fi’s have to be 
rational functions. If the system under consideration passes the PainlevC test (note 
that this is not the case for the system given above) then we can look for further first 
integrals besides the Hamiltonian. If the system does not pass the PainlevC test, then 
we can study (numerically) the distribution of the singularities in the complex plane 
(Chang et a1 1983). This gives us  a possibility to decide whether or not the Hamiltonian 
shows chaotic behaviour. 

(ii) The PainlevC test can fail when the first integrals are transcendental functions. 
To find this type of first integrals we can apply the Lie theory of extended vector fields 
(Leach 1981). Then from the symmetry generator and the Cartan form we can derive 
the first integrals. The technique can be extended to PDES and then we are able to 
find Lie Backlund vector fields (Steeb 1984). 
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(iii) Explicit solutions (if  any exist) can be constructed and then their stability can 
be studied. Two cases have to be distinguished. First, explicit solutions can arise when 
we impose certain initial conditions. Second, explicit solutions can arise when the 
Hamiltonian (in the present case the potential) have discrete symmetries. In the present 
model both types arise. From the second case we obtain periodic solutions. 

(iv) The Toda-Brumer criterion (Toda 1974, Brumer and Duff 1976) (or extensions 
of it) can be applied for finding the onset of chaos. In certain cases this criterion can 
fail. A critical discussion of the Toda-Brumer criterion is given by Tabor (1981). We 
study the time-dependent eigenvalues of the 4 x 4 matrix 

0 1 o\  

where 

(v ( t ) ) ,  = ( a 2 v / a x r  d ~ , ) , = , ( ~ ~  ( 5 )  

and x ( t )  is the reference trajectory. The eigenvalues of M are given by A,= 
i[ - b * ( b2 - 4 ~ ) ’ / ~ ] ‘ / *  where b = a’ V / a x :  + a 2 V / a x :  and c = (a2  V / a x : ) ( a ’ V / a x : )  - 
(a2 v l a x ,  ax2)’.  

If any of the eigenvalues are real, the trajectory separation grows exponentially 
and the motion is deemed unstable. Imaginary eigenvalues correspond to stable motion. 
Notice that the eigenvalues are time dependent and therefore the stability of the motion 
can be a function of time. Toda (1974) removed the time dependence of V ( t )  by 
replacing the time-dependent phase point x (  t )  by the time-independent phase space 
coordinate x.  

(v) Next we can perform numerical studies. For Hamiltonians with two degrees 
of freedom we can apply the surface of section technique. One follows the successive 
crossings of the trajectory through a surface intersecting the energy shell, for example, 
the ( p 2 ,  x 2 )  plane at the point x 1  = 0. If after a sufficient number of iterates, the resulting 
points form a closed curve, called an invariant curve, the trajectory corresponding to 
them lies on an invariant torus or KAM surface. If, instead, these points are dense in 
a two-dimensional area in the plane then the trajectory corresponding to them is 
irregular. Thus for a fixed energy E we are normally forced to calculate these points 
for a sufficiently high number of different initial values. Next we calculate the maximal 
one-dimensional Lyapunov exponent (Benettin et a1 1976). For regular behaviour we 
have A = 0 and for chaotic behaviour A > 0. Here, too, we have to calculate (for a 
fixed energy E )  a sufficiently large number of A’s for different initial conditions. As 
mentioned in (i) we can calculate the distribution of the singularities in the complex-t 
plane ( t  = t l  + if2). Consider the cubically nonlinear oscillator x + x 3  = 0. This equation 
arises when we put x I  = x2 = x in (3). The oscillator has a periodic solution described 
with Jacobi’s elliptic functions. Its singularities (in the complex plane) are characterised 
as simple poles of order one (this tells us the PainlevC analysis) and are distributed 
doubly periodically in the whole complex-t plane. Such a regular distribution of 
singularities reflects faithfully on periodicity of the solution. When the system under 
investigation shows chaotic behaviour the singularities are distributed at random. 

(vi) Finally we can study the system with respect to quantum chaos. This means 
the Hamiltonian can be quantised and then the eigenvalue equation H Y  = EY can 
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be studied. The various manifestations of the well defined classical chaos for Hamilton 
system do not transform in an unequivocal manner when passing to the quantised 
version. Percival(l977) proposed to adopt the terms regular and irregular to distinguish 
the quantal manifestations of quasiperiodic and ergodic classical motion. An approach 
to distinguish between regular and irregular spectral sequences is based on the distribu- 
tion of nearest-neighbour spacings. In the generic regular case, the energy eigenvalues 
are distributed randomly, leading to a Poisson type distribution function. An irregular 
spectrum occurs when the energy levels are correlated resulting in a repulsion of 
adjacent levels. Then the nearest-neighbour spacings distribution function peaks at a 
finite value and exhibits the typical features of a Wigner distribution. It is assumed 
that the Hamiltonian is bounded from below and we have a discrete spectrum. Pullen 
and Edmonds (1981) and Haller et a1 (1984) studied the potential V(x)=  
;x: + ;x: + ;kx:x:. 

Now let us perform our program described above. 
(i)  First we consider the PainlevC test. Inserting the ansatz x,( t )  a (  t - cl)", x2( t )  a 

b ( t -  tl)" into (3) we find that n = m = -1 and a 2 =  b 2 =  -2. Consequently, the 
autonomous system (2) is invariant under the similarity transformation t + a-'?, x, + 

ax,, x2+ ax2, p ,  -* a2pl,  p 2 +  a2p2. Then H(ax,  a2p)  = a4H(x,  p ) .  Due to the results 
of Yoshida (1983) r = 4  has to be one of the resonances (Yoshida calls them 
Kowalevski's exponents). The determination of the resonances yields r ,  = -1, r2 = 4, 
r3 ,4=t*$f i .  Due to the theorem of Yoshida (1983, p 381) 'In order that a given 
similarity system with rational right-hand side is algebraically integrable, every possible 
resonance must be a rational number', we conclude that the system (2) is not algebrai- 
cally integrable. 

(ii) The search for symmetry generators with the help of the theory of extended 
vector fields has no success. Only the symmetry generator S = a/at  arises which is 
associated with the conservation of energy. Together with the result from point (i) we 
conclude that the system (2) is not integrable. 

(iii) At once we find the particular solutions xl( t )  = 0 ,  x2( t )  = C,  t + C2 and xl( t )  = 
C, t + C2, x2( t)  = 0. The potential V(x) = ;x:x: is bounded from below and admits the 
C4" symmetry. Due to the discrete symmetry x1 + x2, x2 + x, of the equations of motion 
we can find an explicit solution by setting x1 = x2 = x. Then we obtain x = -x3. The 
solution of this equation is given by x( t )  = A cn(A( t - to) ,  2-1'2) where A and to are 
the constants of integration. The equations of motion (3) are also invariant under the 
discrete symmetry x, -* x2, x2+ -x,. Putting x1 = -x2 = x again we obtain x = -x3. 
Now we study the stability of these solutions. The variational equations are 
(jl, $2, y 3 ,  y4IT= M ( y , ,  y2, y 3 ,  y4)T where M is given by (4) and T means transpose. 
Then we find 

j ; ,  = - V,,(t)y, - VI2(t)y2 j ; 2 =  -V12(t)y,- V22(t)Y2. ( 6 )  

To perform a stability analysis we make the canonical transformation 

x ,+ ix2=exp( - i~ /4 ) (Xl+ iX2)  

p1 + ip, = exp( -i ~ / 4 )  ( PI + if',). 
Then 

H( P, X )  = ;P; + ;Pi  +b( x;+ x; - 2x:x:). 

The periodic solution x1 = x2 = x with x = -x3 is related to XI = 0. Then X2 = -X:. 
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The variational equations are then 

W-H Steeb, C M W e t  and A Kunick 

L’,= (XZ(~)YYh L’2= -~(XZ(~))~YZ (9) 

where X,( t )  = A cn(A( t - to), 2-l”). Without loss of generality we can put to = 0 and 
A = 1. Let Tr M (  T )  be the index of stability (Whittaker 1927, Yoshida 1984). T 
denotes the period of the solution X,. We find Tr M (  T )  = 8-’/, c o s h ( d r / 4 ) .  Now 
the solution is stable if ITr M (  T)I < 2 and exponentially unstable if ITr M (  T)I > 2. 
Consequently, the solution X, is unstable. 

(iv) Let us now discuss the Toda-Brumer criterion. From the potential V(x) = fxtx: 
we find b = x: + xi  and c = -3x:x:. Let x, # 0 and x2 # 0. Then c < 0. Since b > 0 this 
yields E ,  = 0 ( E ,  is the threshold value) (Steeb and Kunick 1985). 

Now (2) (or (3)) will be considered in the complex domain. We have calculated 
the singularities in the complex-? plane located nearest at the real-t, axis and the initial 
conditions have been chosen so that x,(O) # 0, x2(0) # 0, xl(0) # xz(0) and xl(0) # 
-x2(0). As mentioned above, the real solution is mainly determined by the singularities 
located nearest to the real-t, axis. We find that the singularities are distributed at 
random. The solution of (2) considered in the complex domain is given by the Lie 
series (Grobner and Knapp 1967) 

T 
i X l ( t ) ,  x,(t), Pl(t) ,  Pz(tHT= exp(W(x1, x2, PI, P 2 )  IxI+xlo.....p2+p*o (10) 

where )t i  is sufficiently small and xl0 = xl( t = 0). The vector field V is defined by the 
right-hand side of (2). The expression (10) can be used for numerical studies. 

(v) We now discuss the numerical treatment. Let us exclude the particular solutions 
discussed at point (5). Then we find that, for the trajectories under investigation, the 
one-dimensional Lyapunov exponent is positive. The surface of section technique has 
been widely described by Carnegie and Percival (1984). They conclude that the motion 
of a particle in the potential V(x) =tx:x: is irregular everywhere except for a set of 
measure zero. 

(vi) Let us now discuss quantum chaos. As mentioned above the potential V has 
the symmetry CdV (Pullen and Edmonds 1981). The quantities Al,  A,, B, ,  B,, and E 
label the different irreducible representations. The basic functions can now be chosen 
as a linear combination of the eigenfunctions of the unperturbed (two-dimensional) 
harmonic oscillator so that they transform according to the irreducible representations 
of C4v. We have calculated the matrix representation of H for the subspaces which 
belong to A,, A,, B, ,  and B,. We are not able to diagonalise these infinite matrices 
exactly. Thus we are forced to truncate the matrices and calculate numerically the 
eigenvalues of these finite matrices. For actual calculation it is more suitable to 
introduce ‘Bose creation b’ and Bose annihilation operators b’ according to xj = 
(b f  + b j ) / f i  and p j  = i( b: - b j ) / f i .  The order of our basis In,, n,) ( n , ,  n2 = 0, 1,2, .  . .) 
will be 10, O), 11, O), 10, l), 12, O), 11, I) ,  10,2) and so on. Our truncated matrix is of the 
size 600x600. Then for calculating the histograms we have taken into account the 
first 300 energy levels. In all cases we find Wigner distributions which indicate quantum 
chaos. Since the threshold value is E,  = 0 we can take into account all 300 energy levels. 
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